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Abstract. In this paper, we consider a class of optimization problems
with a strongly convex objective function and the feasible set given by
an intersection of a simple convex set with a set given by a number
of linear equality and inequality constraints. Quite a number of opti-
mization problems in applications can be stated in this form, examples
being entropy-linear programming, ridge regression, elastic net, regular-
ized optimal transport, etc. We extend the Fast Gradient Method applied
to the dual problem in order to make it primal-dual, so that it allows not
only to solve the dual problem, but also to construct nearly optimal and
nearly feasible solution of the primal problem. We also prove a theorem
about the convergence rate for the proposed algorithm in terms of the
objective function residual and the linear constraints infeasibility.

Keywords: Convex optimization : Algorithm complexity - Entropy-
linear programming - Dual problem - Primal-dual method

1 Introduction

In this paper, we consider a constrained convex optimization problem of the
following form

(Pr) mé%lEE{f(x) s Ajx = by, Agw < bo},

where F is a finite-dimensional real vector space, @ is a simple closed and convex
set, A1, As are given linear operators from E to some finite-dimensional real
vector spaces Hy and Hy respectively, by € Hy, by € Hs are given, f(z) is a
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v-strongly convex function on @ with respect to some chosen norm || - ||z on E.
The last means that, for any z,y € Q, f(y) > f(z)+(Vf(z),y—z)+ 5|z —ylF,
where V f(z) is any subgradient of f(x) at x and, hence, is an element of the
dual space E*. Also we denote the value of a linear function g € E* at x € FE
by (g,).

Problem (P;) captures a broad set of optimization problems arising in appli-
cations. The first example is the classical entropy-linear programming (ELP)
problem [1] which arises in different fields, such as econometrics [2], modeling
in science and engineering [3], especially in modeling of traffic flows [4] and IP
traffic matrix estimation [5,6]. Other examples are the ridge regression problem
[7] and the elastic net approach [8], which are used in machine learning. Finally,
the problem class (P;) covers problems of regularized optimal transport (ROT)
[9] and regularized optimal partial transport (ROPT) [10], which recently have
become popular in application to image analysis.

Classical balancing algorithms such as [9,11,12] are very efficient for solv-
ing ROT problems or special types of ELP problem, but they can deal only
with linear equality constraints of a special type and their rate of convergence
estimates are rather impractical [13]. In [10], the authors provide a generaliza-
tion, but only for ROPT problems which are a particular case of Problem (P;)
with linear inequalities constraints of a special type, and no convergence rate
estimates are provided. Unfortunately, the existing balancing-type algorithms
for ROT and ROPT problems become very unstable when the regularization
parameter is chosen very small, which is the case when one needs to calculate a
good approximation to the solution of an optimal transport (OT) or an optimal
partial transport (OPT) problem.

In practice, typical dimensions of the spaces F, H1, Hy range from thousands
to millions, which makes it natural to use a first-order method to solve Problem
(P1). A common approach to solve such large-scale Problem (P;) is to make
the transition to the Lagrange dual problem and solve it by some first-order
method. Unfortunately, the existing methods, which elaborate this idea, have
at least two drawbacks. Firstly, the convergence analysis of the Fast Gradient
Method (FGM) [14] can not be directly applied since it is based on the assump-
tion of boundedness of the feasible set in both the primal and the dual problem,
which does not hold for the Lagrange dual problem. A possible way to overcome
this obstacle is to assume that the solution of the dual problem is bounded and
add some additional constraints to the Lagrange dual problem in order to make
the dual feasible set bounded. But, in practice, the bound for the solution of the
dual problem is usually unknown. In [15], the authors use this approach with
additional constraints and propose a restart technique to define the unknown
bound for the optimal dual variable value. The authors consider classical ELP
problems only with equality constraints and do not discuss any possibility of
application of their technique to Problem (P;) with inequality constraints. Sec-
ondly, it is important to estimate the rate of convergence not only in terms of
the error in the solution of the Lagrange dual problem, as it is done in [16,17],
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but also in terms of the objective residual in the primal problem® |f(zy) —
Opt[Py]| and the linear constraints infeasibility || A1z —b1 | my, |(A2zr —b2)+ || o2,
where vector v4 denotes the vector with components [v4]; = (v;)+ = max{v;, 0},
xy, is the output of the algorithm on the k-th iteration, Opt[P;] denotes the opti-
mal function value for Problem (P;). Alternative approaches [18,19], based on
the idea of the method of multipliers, and the quasi-Newton methods such as
L-BFGS also do not allow to obtain the convergence rate for the primal problem
residual and the linear constraints infeasibility.

Our contributions in this work are the following. We extend the Fast Gradient
Method [14,20], applied to the dual problem, in order to make it primal-dual,
so that it allows not only to solve the dual problem, but also to construct nearly
optimal and nearly feasible solution to the primal problem (P;). We also equip
our method with a stopping criterion, which allows an online control of the
quality of the approximate primal-dual solution. Unlike [9,10,15-19], we provide
the estimates for the rate of convergence in terms of the primal objective residual
| f(zx) —Opt[P1]| and the linear constraints infeasibility || Az —b1|| &, , ||(A2zk —
ba)+ || z,- In the contrast to the estimates in [14], our estimates do not rely on
the assumption that the feasible set of the dual problem is bounded. At the same
time, our approach is applicable for the wider class of problems defined by (P;)
than the approaches in [9,15]. In the computational experiments, we show that
our approach allows to solve ROT problems more efficiently than the algorithms
of [9,10,15] when the regularization parameter is small.

2 Preliminaries

2.1 Notation

For any finite-dimensional real vector space E, we denote by E* its dual. We
denote the value of a linear function g € E* at € E by (g, ). Let || - ||z denote

some norm on F and || - | g« denote the norm on E*, which is dual to || - || g
= ma x).
gl = max {g,2)

In the special case of a Euclidean space F, we denote the standard Euclidean
norm by ||-||2. Note that, in this case, the dual norm is also Euclidean. By 9f(z)
we denote the subdifferential of a function f(x) at a point . Let F1, E5 be two
finite-dimensional real vector spaces. For a linear operator A : Ey — Fs, we
define its norm as follows
|AllE,—E, = Zegi&;{w, Az) - |lzl|p, =1, Jullg,« =1}

For a linear operator A : Ey — Fs, we define the adjoint operator AT . E3 — EY
in the following way

(u, Az) = (ATu,2), Yu € E}, x¢€E.

! The absolute value here is crucial since z; may not satisfy linear constraints and,
hence, f(zx) — Opt[P1] could be negative.
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We say that a function f: E — R has a L-Lipschitz-continuous gradient if it is
differentiable and its gradient satisfies Lipschitz condition

IVf(z) =ViWlles < Lz —yle.

We characterize the quality of an approximate solution to Problem (P;) by
three quantities €5, €cq, €in > 0 and say that a point & is an (e, €¢q, €in )-solution
to Problem (P;) if the following inequalities hold

|f(2) — Opt[Pr]| <ep, [|A1Z —bill2 < eeqy  [[(A2Z = b2)4l2 < €in, (1)

where Opt[P;] denotes the optimal function value for Problem (P;) and, for any
vector v, the vector vy denotes the vector with components [vi]; = (v;)4 =
max{v;,0}. Also, for any ¢ € R, we denote by [t] the smallest integer greater
than or equal to t.

2.2 Dual Problem

Let us denote A = {\ = (AW ACHT ¢ Hf x H; : A\® > 0}. The Lagrange dual
problem to Problem (Py) is

_O\W —_(\@ i Ty (1) T4 (2)
(D) rileaf{ (N0 b1) = A by) + min (f(;@ (ATAD 4 AT\ x>)}
We rewrite Problem (D7) in the equivalent form of a minimization problem.
; 1) 2 _ _ (AT T4(2)
<&>gg{u 1) + (A ba) 4 ma (@) — (ATAD + AT wo}

We denote
() = p(AMA®) = A0, b1) + (A bo) + max (—f(2) — (ATAD + 412 2)) . (2)

Note that the gradient of the function ¢()) is equal to (see e.g. [14])

bl — A1$(>\)
Ve(A) = ; 3
oY) (%—AwQ) g
where x(\) is the unique solution of the problem
— (AT Ty (2)
ma (= /() = (ATAD + AT, 2)) (4)

It is important that Ve(A) is Lipschitz-continuous (see e.g. [14]) with the
constant

L==(lAlEn, + 4205-m,) - (5)

R

Obviously, we have

Opt|D1] = —Opt[Ps], (6)
where by Opt|[D1], Opt|P,] we denote the optimal function value in Problem (D;)
and Problem (P,) respectively. Finally, the following inequality follows from the
weak duality

Opt[P1] > Opt[D:]. (7)
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2.3 Main Assumptions
We make the following two main assumptions

1. The problem (4) is simple in the sense that for any « € @ it has a closed form
solution or can be solved very fast up to a machine precision.

2. The dual problem (D;) has a solution \* = (A\*M) X*@)HT and there exist
some Ry, Ry > 0 such that

Iy < Ry < 400, NP < Ry < +00. (8)

2.4 Examples of Problem (P;)

In this subsection, we describe several particular problems, which can be written
in the form of Problem (P).

Entropy-linear programming problem [1].

zergilgl) {;% In(z;/&): Ax = b}

for some given £ € R}, = {x € R" : 2; > 0,4 = 1,...,n}. Here S,(1) = {z €
R™: Y0 @ =L > 0,0 =1,...,n}.

Regularized optimal transport problem [9].

P P
. T
min {7y E xijInw;; + E cijxij: Xe=a1,X e=az ), (9)
XeR
i

ij=1 ij=1
where e € R? is the vector of all ones, ai,as € Sp(1), ¢;; > 0,1,j =1,...,p are
given, v > 0 is the regularization parameter, X7 is the transpose matrix of X,
z;; is the element of the matrix X in the i-th row and the j-th column.

Regularized optimal partial transport problem [10].

P P
min vzxijlnmij+ Z cijxij:XegahXTegag,eTXe:m ,
X ERPXP - =
+ 3,j=1 3,j=1
where a1, a5 € Rﬁ, cij > 0,4,5 =1,...,p, m > 0 are given, v > 0 is the regulariza-
tion parameter and the inequalities should be understood component-wise.

3 Algorithm and Theoretical Analysis

We extend the Fast Gradient Method [14,20] in order to make it primal-dual,
so that it allows not only to solve the dual problem (P2), but also to construct a
nearly optimal and nearly feasible solution to the primal problem (P;). We also
equip it with a stopping criterion, which allows an online control of the quality of
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the approximate primal-dual solution. Let {e;};>0 be a sequence of coefficients
satisfying

k
ao € (0,1], of <> a;, Vk>1.

k 3
We define also Cy, = >, oy and 7; = g“ Usual choice is o; = ’*1 ,1>0.In

this case C = W. Next, let us define Euclidean norm on H I x Hyin a

natural way
M3 = IADZ + AP,

for any A = (AW ACHT € Hf x Hj. Unfortunately, we can not directly use the
convergence results of [14,20] for the reason that the feasible set A in the dual
problem (D;) is unbounded and the constructed sequence &) may possibly not
satisfy the equality and inequality constraints.

ALGORITHM 1. Fast Primal-Dual Gradient Method

Input: The sequence {«; }i>o, Lipschitz constant L (5), accuracy €, &eq, Ein > 0.
Output: The point Z.

Choose Ao = (A, AT = 0.

Set k = 0.

repeat
Find

: L
= (", )" = arg min {so(/\k) (Vo) A =) + S IA = /\k\lﬁ} .

k
. L
Ge= (¢, )" = arg min {z; ai (e(As) +(Vo(Xi), A = i) + 2|>\||3} .

Set
Akp1 = (A;(:lp >\z(f+)1)T = TCk + (1 — 7)1k,
where 7, = Z‘Z%lal
Set
1 K
T = -5 Zalx()\l) = (1 — Tk_l)i‘k_1 + Tk_ll‘()\k),
2 im0 ®i iz
Set k+1.

until |f(i‘ )+ o) < Ep, |A1Zr — bil2 < Eeq, ||(A2de — b2)4 |2 < Ein;

Theorem 1. Let the assumptions listed in the Subsect. 2.3 hold and o; = L,

2
i > 0 in Algorithm 1. Then Algorithm 1 stops after not more than

2 2 9 2 o 5
NstOP = max ’V\/8L(R];+ Rz)“ ) ’V\/SL(R]':"_ R2)-‘ s w —].

Ef Ri€eq Rogip,
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iterations. Moreover, after not more than

2 2 2 2
N:max{{ 16L(R? + R2) ’NSL(RﬁRQW’ }_1
ngeq

er
iterations of Algorithm 1, the point Ty will be an approximate solution to Prob-
lem (P1) in the sense of (1).

Raein

\/8L(R§ + R2)

Proof. From the complexity analysis of the FGM [14,20], one has

k

Ckw(nk)égleig{zai(w Ai) + (Vo(Xi), A = Ai)) + I/\Ili}- (10)
i=0

Let us introduce a set
Ap ={A=QADACHT A > 0, AWy < 2Ry, [|AP[|2 < 2Ry},

where Rj, Rs are given in (8). Then, from (10), we obtain

k
Crep(ni) < grleig{zai( Ai) +(Vo(Xi), A = Ai)) + |)\|§}
/\rg& {Zal ()‘i)v)\_)\i>)+§|>‘%}
< min {Z o ( Vip(Xi), A — M)} +2L(R? + R3). (11)

On the other hand, from the definition (2) of ¢()), we have

o) = e AP = AW by) + (AP, by)
_ _ AT T4 (2)
+max (—f(x) — (ATA + ATAP )
= M0 + P be) — () — (ATA + ATAP ().
Combining this equality with (3), we obtain
(M) — (Vo) A = oA, A2) = (VoA A2, A, A7)
= M) + (0, b2> — fla(n) — (ATALN + ATAP) 2 (0))
— (b1 — Az (M), M) — (be — Asx(N), ALY = — Flz(\).
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Summing these inequalities from ¢ = 0 to ¢ = k with the weights {a; }i=1, .k, we
get, using the convexity of f(-),

k

Zai (X)) + (Ve Xi), A = As))
k k
=_ Zaif($<Ai)) + Zai<(b1 — Ajz(\i), by — Az (A))T, (A AGHT)

< —Chf (&) + Ci((by — Ardg, by — Agdip)”, A, X)),
Substituting this inequality to (11), we obtain

Crp(mi) < —Crf (k)
+Ci min {{(or = A, o — A) 7, WD X))+ 2L(RS + RD).

Finally, since

max {<(—b1 + Ayig, —by + Agi) T, (A, A<2>)T>}
= 2Ry || Av @y — 1|2 4+ 2Rz || (A2Zk — b2) 1|2,

we obtain

o) + f(2r) + 2R || A1@x — b1 |2 + 2Rz[[(A2Zy — b2) 1 [l2 <

2 2
2L(R; + R3) L (12)
Ck

Since A* = (A*(W A*2)T is an optimal solution of Problem (D7), we have, for
any x € Q,
Opt[P1] < f(z) + NW Arz — by) + (AP Ayx — by).

Using the assumption (8) and that A*?) > 0, we get

[(@r) > Opt[P1] — Ry1||A12), — bil|2 — Ral[(A2Zk — b2) 4|2 (13)
Hence,
() + F(ix) = (n) — Opt[Ps] + Opt[Py] + Opt[P1] — Opt[Py] + f(ix)
)
= @(nk) — Opt[P2] — Opt[D1] + Opt[P1] — Opt[Pr] + f(ix) >
(13)
> —Opt[P1] + f(#x) > —Ri||A1Z — bill2 — Ral[(A2dr — b2) ¢ ]|2- (14)
This and (12) give
) ) 2L(R? + R?
Rull vy — bl + Roll(Aaty — bo) o < 22 TL) g

Ck
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Hence, we obtain

(14),5)  2L(R} + R3)

() + f(@r) = o : (16)
k
On the other hand, we have
(12) 2L(R? + R
o)+ (i) € PHELEID), (17)
k
Combining (15), (16), (17), we conclude
. 2L(R% + R3)
A1y — bl < —/———=2
| A1Zx 1ll2 < CuR, )
. 2L(R? + R3)
Asp — b <= 2
[(A2@k — b2)+ 2 < Ry
. 2L(R? + R}
(olne) + ()] < ZHELETE), (18)
k
As we know, for the chosen sequence «; = %,i > 0, it holds that C; =

(k+1)(k+2) (k+1)?
1 2 1

. Then, in accordance to (18), after given in the theorem
statement number Ny, of the iterations of Algorithm 1, the stopping criterion
is fulfilled and Algorithm 1 stops.

Now let us prove the second statement of the theorem. We have

() + Opt[P1] = o(mi) — Opt[Ps] + Opt[Py] + Opt[Py] &

=

= (i) — Opt[Ps] — Opt[D1] + Opt[P1] ;)

Hence,
f(@r) — Opt[P1] < f(@x) + (). (19)
On the other hand,

(13)
f(@r) = Opt[P1] > —Ril|A13g — b1l — Rao|/(A2dk — b2)+ |2, (20)

Note that, since the point Z; may not satisfy the equality and inequality con-
straints, one can not guarantee that f(&) — Opt[P;] > 0. From Equation (19),
(20), we can see that if weset £ = e, &g = min{;Tfl, €eqts Ein = min{;sz, Ein s
and run Algorithm 1 for N iterations, where N is given in the theorem state-
ment, we obtain that (1) fulfills and Zx is an approximate solution to Problem
(P1) in the sense of (1). O

We point that other authors [9,10,15-19] do not provide the complexity analysis
for their algorithms when the accuracy of the solution is defined by (1).
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4 Preliminary Numerical Experiments

To compare our algorithm with the existing algorithms, we choose the problem (9)
of regularized optimal transport [9], which is a special case of Problem (P;). The
first reason for this choice is that, despite insufficient theoretical analysis, the exist-
ing balancing-type methods for solving this class of problems are known to be very
efficient in practice [9] and provide a kind of benchmark for any new method. The
second reason is that ROT problem have recently become very popular in applica-
tion to image analysis based on Wasserstein spaces geometry [9,10].

Our numerical experiments were carried out on a PC with CPU Intel Core i5
(2.5Hgz), 2 Gb of RAM using Matlab 2012 (8.0). We compare proposed in this
article Algorithm 1 (below we refer to it as FGM) with the following algorithms

— Applied to the dual problem (D;), Conjugate Gradient Method in the
Fletcher-Reeves form [21] with the stepsize chosen by one-dimensional mini-
mization. We refer to this algorithm as CGM.

— The algorithm proposed in [15] and based on the idea of Tikhonov’s regulariza-
tion of the dual problem (D;). In this approach the regularized dual problem
is solved by the Fast Gradient Method [14]. We will refer to this algorithm as
REG;

10
6X T T T T
——FGM
=+=-BAL .
5o CGM ]
E‘ 4r » ’-':'0 -------- * ]
2
&3t * ‘ 1
=]
% I*\
i\
§ 2L ” \\ i

100

scale, 1/y

Fig. 1. Complexity of FGM, BAL and CGM as +y varies
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— Balancing method [9,12] which is a special type of a fixed-point-iteration
method for the system of the optimality conditions for ROT problem. It is
referred below as BAL.

The key parameters of the ROT problem in the experiments are as follows

— n = dim(E) = p? -~ problem dimension, varies from 2* to 9*;

- mq = dim(Hy) = 2y/n and mg = dim(H;) = 0 — dimensions of the vectors
b1 and bs respectively;

— ¢, 4,5 = 1,...,p are chosen as squared Euclidean pairwise distance between
the points in a \/p x /p grid originated by a 2D image [9,10];

— a; and ay are random vectors in S, (1) and by = (a1,a2)7;

— the regularization parameter v varies from 0.001 to 1;

— the desired accuracy of the approximate solution in (1) is defined by its relative

counterpart a?el and 62‘3[ as follows

er =5 flm(M))  eeq =5 - A1z (o) — b2,

where Ag is the starting point of the algorithm. Note that e, = 0 since no
inequality constraints are present in ROT problems.

Figure 1 shows the number of iterations for the FGM, BAL and CGM meth-
ods depending on the inverse of the regularization parameter . The results for

4

10
4'5X T T T T T T T T
——FGM
“ --=-BAL |
@ CGM
3,51 |
: .
Z 3_ s . i
=
% 2.5¢
)
_g 2F ,\\ L
& FERY
2 1. S ST Y0 N i
a \
\
\\\ i
et
N\
\\

relative error, &' x 10

Fig. 2. Complexity of FGM, BAL and CGM as the desired relative accuracy varies
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the REG are not plotted since this algorithm required one order of magnitude
more iterations than the other methods. In these experiment we chose n = 2401
and 5;El = 5261 = 0.01. One can see that the complexity of the FGM (i.e. pro-
posed Algorithm 1) depends nearly linearly on the value of 1/, and that this
complexity is smaller than that of the other methods when ~ is small.

Figure 2 shows the number of iterations for the FGM, BAL and CGM meth-
ods depending on the relative error 7. The results for the REG are not
plotted since this algorithm required one order of magnitude more iterations
than the other methods. In these experiment we chose n = 2401, v = 0.1 and
E}d = 5261 = £, One can see that in half of the cases the FGM (i.e. proposed
Algorithm 1) performs better or equally to the other methods.

5 Conclusion

This paper proposes a new primal-dual approach to solve a general class of
problems stated as Problem (P;). Unlike the existing methods, we managed to
provide the convergence rate for the proposed algorithm in terms of the pri-
mal objective residual |f(Z; — Opt[P;]| and the linear constraints infeasibility
|A1Zx — b1l2, ||[(A2Zk — b2)+||2. Our numerical experiments show that our algo-
rithm performs better than existing methods for problems of regularized optimal
transport, which are a special instance of Problem (P;) for which there exist effi-
cient algorithms.
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